企业增资验资网

企业增资验资网

七年级上数学公式

来源:互联网 综合百科 0

加法交换律:a+b=b+a。

加法结合律:(a+b)+c=a+(b+c)。

减法法则:a-b=a+(-b)。

乘法交换律:ab=ba。

乘法结合律:(ab)c=a(bc)。

除法法则:a÷b=a(1÷b)【b≠0】。

角与线——对顶角相等同一平面内,有且只有一条直线与已知直线垂直。同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。

一)运用公式法

我们知道整式乘法与因式分解互为逆变形.如果把乘法公式反过来就是把多项式分解因式.于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积.这个公式就是平方差公式.

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解.

2.因式分解,必须进行到每一个多项式因式不能再分解为止.

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式.

上面两个公式叫完全平方公式.

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同.

③有一项是这两个数的积的两倍.

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解.

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式.这里只要将多项式看成一个整体就可以了.

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止.

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)•(a +b).

乘法与因式分解

a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解根与系数的关系

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

x1+x2=-b/ax1*x2=c/a注:韦达定理

判别式

b2-4ac=0注:方程有两个相等的实根

b2-4ac>0注:方程有两个不等的实根

b2-4ac

三角函数公式

两角和公式

sin(a+b)=sinaco***+cosas。

初一上册数学公式大全

抱歉,评论功能暂时关闭!