设多边形的边数为N。
则其内角和=(N-2)*180°。
因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)。
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°。
即N边形的外角和等于360°。
设多边形的边数为N。
则其外角和=360°。
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)。
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°。
免责声明:本站内容仅用于学习参考,文字信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)