企业增资验资网

企业增资验资网

2019高一数学必修一作业本【答案】

来源:互联网 综合百科 15

22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,因为x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2). 第二章基本初等函数(Ⅰ) 2.1指数函数

211指数与指数幂的运算(一)

1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7. 7.原式=|x-2|-|x-3|=-1(x<2), 2x-5(2≤x≤3),

1(x>3).8.0.9.2011.10.原式=2yx-y=2.

11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.211指数与指数幂的运算(二) 1.B.2.B.3.A.4.94.5.164.6.55.

7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.

9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab. 11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827. 211指数与指数幂的运算(三)

1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2. 8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.47288,00885.

10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式

=x-2xy+yx-y=-33. 11.23.

212指数函数及其性质(一)

1.D.2.C.3.B.4.AB.5.(1,0).6.a>0.7.125. 8.(1)图略.(2)图象关于y轴对称.

9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有值6.10.a=1.

11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a<1时,x2-2x+1<x2-3x+5,解得{x|x<4}. 212指数函数及其性质(二)

1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.

5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.

8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1. 10.(1)f(x)=1(x≥0),

2x(x<0).(2)略.11.am+a-m>an+a-n. 212指数函数及其性质(三)

1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0). 7.由已知得0.3(1-0.5)x≤0.08,因为0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.

8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).

10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y). 11.34,57. 2.2对数函数

221对数与对数运算(一)

1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.

7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2. 9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-3<x<2,且x≠1.

10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910. 11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3. 221对数与对数运算(二)

1.C.2.A.3.A.4.03980.5.2logay-logax-3logaz.6.4. 7.原式=log2748×12÷142=log212=-12.

8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.

11.由已知得(log2m)2-8log2m=0,解得m=1或16. 221对数与对数运算(三)

1.A.2.D.3.D.4.43.5.24.6.a+2b2a.

7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.

8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.

9.25.10.a=log34+log37=log328∈(3,4).11.1. 222对数函数及其性质(一)

1.D.2.C.3.C.4.144分钟.5.①②③.6.-1. 7.-2≤x≤2.8.提示:注意对称关系. 9.对loga(x+a)1时,0a,得x>0.

10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.

11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即

x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.

222对数函数及其性质(二)

1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log204<log30.4<log40.4. 7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x>lg3lg2.

9.图略,y=log12(x+2)的图象能够由y=log12x的图象向左平移2个单位得到.

抱歉,评论功能暂时关闭!